Cutaneous Lupus: A Brief Review of Old and New Medical Therapeutic Options

Fnu Nutan¹ and Alex G. Ortega-Loayza²

Systemic lupus erythematosus is a chronic inflammatory condition which affects predominantly women in their 30s. It has several clinical manifestations, including skin lesions that can be classified as acute cutaneous lupus erythematosus, subacute cutaneous lupus erythematosus, and chronic cutaneous lupus erythematosus. A multifaceted approach to treating cutaneous lupus is advocated.

INTRODUCTION

Systemic lupus erythematosus (SLE) is an autoimmune disease that affects multiple organ systems in the body, including the skin and/or mucous membranes. These can be involved in over 80% of the patients with SLE. There are lupus-specific skin lesions and lupus nonspecific skin lesions (Berbert et al., 2005; Gilliam, 1977). Cutaneous lupus erythematosus (CLE) most often affects women ages 20–50 years and is often induced by sunlight. It is categorized into three main entities: acute cutaneous lupus erythematosus (ACLE), subacute CLE, and chronic cutaneous lupus erythematosus (CCLE) (Sticherling, 2011). The latter is the most common subtype of CLE, accounting for 75% of all cases of CLE. It is crucial to properly evaluate the extent of skin involvement versus systemic involvement, because they do not always directly correlate. Up to 28% patients with CCLE are susceptible to developing SLE, and earlier diagnosis and treatment might affect the onset of SLE.

According to the new Systemic Lupus International Collaborating Clinics criteria published in 2012, ACLE lesions, CCLE lesions, oral and nasal ulcers, and non-scarring alopecia form four of the 11 clinical criteria for the diagnosis of SLE (Petri et al., 2012). Malar rash, discoid rash, photosensitivity, and oral ulcers are four of the 11 criteria from the American College of Rheumatology-approved SLE diagnosis criteria (Tan et al., 1982).

Incidence of CLE is similar to incidence of SLE. CLE is three times more common than SLE in men. About 33% of patients with subacute CLE have lesions that are related to the use of drugs including terbinafine, thiazides, proton pump inhibitors, and statins (Gronhagen et al., 2012). Therefore, stopping these medications is an important part of management.

BRIEF PATHOPHYSIOLOGY

Pathogenesis of CLE is a complex, multistep process, and much knowledge has gained in recent years. The end product of skin injury and abnormal immune response expresses as histopathological change of atrophy of the epidermis, hydropic degeneration of the basal cell layer with apoptotic keratinocytes, hyperkeratosis, follicular plugging, and base membrane thickening with dermal edema (Oke and Wahren-Herlenius, 2013). Abnormal expression of both T helper (Th) cells Th1, Th2, and Th17 and cytokines are important in pathogenesis of tissue injury. Plasmacytoid dendritic cells play a central role in antigen presentation and produce IFN type 1 in response to nuclear antigens with immune complexes and drive cutaneous inflammation (Robinson and Werth, 2015). Multiple new agents are being introduced with targeted effect on the various cytokines and chemokines.

GENERAL PRINCIPLES OF THERAPY

The treatment of CLE should be divided into non-pharmacological and pharmacological approaches. Under the nonpharmacological approach, it is important to address patient adherence at each visit. Physical protection like broad-brimmed hats and sun-protective clothing, along with proper use of sunscreen, is essential.

Smoking enhances toll-like receptor 9 responsiveness and IFN type 1 production in plasmacytoid dendritic cells. Tobacco is also phototoxic and up-regulates expression of metalloproteinases 1 through 8 (Ortiz and Grando, 2012). Hence, smoking cessation is of paramount importance. Moreover, research studies have found that vitamin D repletion helps with better response to medications (Abouraya et al., 2013).

Within the pharmacological therapy approach, the use of topical corticosteroids (CSs) and calcineurin inhibitors is widely accepted. Intraleisonal CSs could be used in localized areas. When a patient with CLE does not respond appropriately to topical therapy and/or the cutaneous disease is widespread, the use of systemic therapy should be considered.

Finding the appropriate therapy for a patient could be challenging. It is well known that 66% of patients with CCLE will respond appropriately to antimalarials (hydroxychloroquine, chloroquine, quinacrine). Another group of people would respond appropriately when immunomodulators or immunosuppressive medications are added to the
regimen; however, 10% of patients are intolerant or have recalcitrant lesions.

New advances in basic and translational research in autoimmunity have been crucial in the development of these new options, which include biological agents. These new medications target key inflammatory pathways, which play an important role in the pathogenesis of the disease. The next challenge is to be more precise and predict the response of these new medications in an individual with CLE. Tailoring treatment to each person’s unique disease is the next goal. The goals of therapy is to improve the appearance of the skin, limit scarring, and prevent new skin lesions. In this article we briefly discuss the various medical therapeutic options for patients with CLE.

TOPICAL TREATMENTS

Topical CSs and calcineurin inhibitors are the most widely used topical treatments. Topical CSs have been used the longest and can be classified as fluorinated and non-fluorinated. They are first-line agents but unfortunately are associated with local and sometimes systemic adverse effects if used for long durations and on large body surface areas (Ting and Sontheimer, 2001). Topical calcineurin inhibitors (tacrolimus 0.1% and pimecrolimus 0.3%) have the same efficacy as topical steroids. They are especially useful in children and on facial lesions with avoidance of telangiectasias and atrophy (unlike topical CSs) because they have no effect on endothelial cells and skin fibroblasts. Most ACLE and CCLE lesions respond well to treatment, but only minor effects are noted in lesions of subacute CLE and tumid lupus (Sardy et al., 2009).

R-salbutamol is β2 adrenergic receptor agonist that inhibits IL-2 and IFN-γ production. A 0.5% cream applied twice per day has shown significant improvement in scaling/hypertrophy, pain, and itching with ulceration in patients with CCLE (Tokunaga et al., 2005).

SYSTEMIC TREATMENTS

Older treatments (pre-biologicals era)

Antimalarials. Antimalarials were the oral first-line therapy in cutaneous lupus, introduced in 1953. Hydroxychloroquine, chloroquine, and quinacrine are the three drugs that belong to this class. The first case series of chloroquine sulfate in CLE was published in the British Medical Journal in 1955 by Lewis (1955).

Mechanism of action is proposed to be immunomodulating effects with influencing antigen presentation, stabilizing lysosomes, suppression of toll-like receptor signaling (toll-like receptor 9), and reducing plasmacytoid dendritic cell production of IFN by preventing nucleic acids from acting on toll-like receptors.

Dosage recommendations are as follows: hydroxychloroquine, 6.0—6.5 mg/kg of ideal body weight; chloroquine, 3.5—4 mg/kg of ideal body weight; quinacrine, 100 mg/day. For low-weight patients, use of actual weight for dosage is recommended.

Adverse effects include nausea, vomiting, irreversible retinopathy (rare and total, dose dependent), and yellow discoloration of the skin/mucous membranes. Response rates of 75—95% are seen.

Methotrexate. Methotrexate was introduced in 1965 and is considered a second line of therapy, especially in ACLE and CCLE. It is also used in lesions refractory to antimalarials and as a CS-sparing agent. The mechanism of action includes action on adenosine, which is a purine nucleoside and has potent anti-inflammatory effects. It induces apoptosis in CD4+ T cells. In a study of patients with lupus, significant reduction in autoantibodies (92.3%) compared with the control group (50%) was found with the use of methotrexate (Miyawaki et al., 2013).

The dosage ranges from 7.5 mg to 25 mg once per week orally, intravenously, or subcutaneously. Adverse effects include gastrointestinal complaints, which can be alleviated with administration of folic acid before or after methotrexate administration; hepatotoxicity; nephrotoxicity; and bone marrow suppression. Interstitial pneumonitis, which is extremely rare, can potentially be fatal.

Retinoids. Introduced in 1983, retinoids are also considered second-line therapy for treatment of CCLE, according to the American Academy of Dermatology guidelines (Drake et al., 1996). Lesions of discoid lupus have shown more response with retinoids, and retinoids have been especially useful in hypertrophic/verrucous CLE (Al-Mutairi et al., 1987).

Retinoids inhibit the expression of the proinflammatory cytokines (IL-6), MRP-8, and IFN-γ (markers of hyperproliferation and abnormal keratinocyte differentiation). They are also anti-inflammatory and antiproliferative, and they normalize keratinocyte differentiation in the epithelium.

Recommended dosages of acitretin and isotretinoin are 0.2—1.0 mg/kg/weight daily. Adverse effects include cheilitis and hair loss (dose dependent) and elevation of triglyceride levels. Birth defects are noted, and hence contraception for 1 month with isotretinoin use and 3 years with acitretin use is strictly enforced. Drug-induced hepatitis is also to be monitored for.

In the only double-blind, randomized, multicenter trial comparing the efficacy of acitretin and hydroxychloroquine in 28 and 30 patients with CCLE, improvements in 13 patients (46%) treated with acitretin and 15 (50%) patients with hydroxychloroquine were noted (Ruzicka et al., 1992).

Dapsone. Introduced in the 1980s, dapsone is recommended for vasculitic lesions, urticarial lesions, oral ulceration, the nonscarring form of CCLE, chloroquine intolerance, bullous lupus, and lupus panniculitis. Although lesions of the hyperkeratotic form do not respond to dapsone (Ruzicka et al., 1981), bullous lesions respond very well (Hall et al., 1982).

Dapsone is an antibiotic that blocks the myeloperoxidase enzyme. This may explain its anti-inflammatory and immunomodulatory effect. Even this does not explain its mechanism of action when it is used in skin conditions in which bacteria do not have a role. Other theories used are its action on neutrophils and possible tumor necrosis factor-α modulation.

Dapsone is started at 50 mg daily, with increments of 25 mg added every subsequent week until a maximum dosage of 200 mg daily. Adverse effects can be pharmacologic in nature and include hemolytic anemia and methemoglobinemia, and hence glucose 6 phosphate deficiency must be excluded before initiation of treatment. Idiosyncratic reactions include agranulocytosis, drug hypersensitivity syndrome, peripheral neuropathy, gastrointestinal adverse effects, and psychosis.
Myophenolate mofetil (MMF). MMF was introduced in 1999. In an open pilot trial for patients with SLE treated with MMF, improvements in skin manifestations were noticed (Kreuter et al., 2007). MMF is used in lesions refractory to antimalarials and other immunomodulatory agents.

MMF acts on both T and B cells by inducing apoptosis of T cells and preventing the B cells from producing antibodies. It may also stop lymphocyte proliferation. Guanosine triphosphate is required by lymphocytes and monocytes to attach to endothelial cells during inflammation. MMF causes guanosine triphosphate depletion, thus stopping this attachment. MMF also depletes monocytes and macrophages, which produce proinflammatory cytokines. Thus, fibroblast recruitment and proliferation, with consequent fibrosis, are prevented. MMF may also act on dendritic cells by inhibiting antigen maturation and presentation.

MMF is usually dosed at 1.0 to 3.0 g/day and also needs renal dosage adjustment. It is a category X drug, which means should not be used in pregnancy. Adverse effects that are seen with MMF include leukopenia and hence susceptibility to viral infections and urinary tract infections. Nausea, vomiting, abdominal cramping, and diarrhea are the gastrointestinal effects commonly seen.

Thalidomide/lenalidomide. Thalidomide was introduced in 1983. Hasper (1983) used thalidomide in 11 patients with CCLE (Hasper, 1983). Knop et al. (1983) published work on 60 patients with discoid lupus erythematosus in the British Journal of Dermatology (Knop et al., 1983). The initial treatment dosage of thalidomide is 400 mg daily, which can be tapered down to 50–100 mg/daily.

Lenalidomide, although introduced in 2004, was first used in two patients with resistant discoid lupus erythematosus in 2009, with one of them being successfully treated (Shah et al., 2009). It is used at a dosage of 5–10 mg/day. Recently, the Mayo Clinic published their experience with lenalidomide over 14 years, during which they had nine patients and found discoid lupus lesions responded with no response in lupus tumidus lesions (Kindle et al., 2016).

The mechanism of action of thalidomide includes inhibition of synthesis of tumor necrosis factor-α. Lenalidomide has more potent anti-tumor necrosis factor-α activity and UVB-induced keratinocyte apoptosis with inhibition of IFN-γ.

Both are used in severe CLE, especially in deep-seated lesions and discoid lupus. They are also an option for patients for whom conventional therapies are ineffective or who have experienced debilitating adverse effects from them (Baret and De Haes, 2015). They are most useful as remission-inducing agents in combination with antimalarials, because as single-therapy agents they are associated with a high risk of recurrence.

Thalidomide is infamous for its teratogenicity during pregnancy. It also causes drowsiness, amenorrhea, and thrombotic events. Patients need baseline nerve conduction studies given the high risk of polyneuropathy (25–30 %), which may be irreversible. Lenalidomide carries less risk of peripheral neuropathy, and patients with systemic disease might not be good candidates (Okon et al., 2014).

Clofazimine. Clofazimine, with antibacterial, anti-inflammatory, and immunosuppressant activity, has been used since 1974. The dosage is 100–200 mg/day (Bezerra et al., 2005). Adverse effects of clofazimine are brownish discoloration of skin and bodily secretions, which is reversible. Dry skin, nausea, and vomiting are common, and eosinophilic enteritis and splenic infarction are rare.

Miscellaneous. Azathioprine is primarily reserved for patients with SLE. Cyclosporine and cyclophosphamide are not indicated for patient with cutaneous lupus lesions.

New treatments (biologicals era) (Table 1)

<table>
<thead>
<tr>
<th>Biological</th>
<th>Mechanism of Action</th>
<th>Level of Evidence</th>
<th>Specific Type of LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sifalimumab</td>
<td>Humanized anti-IFN-α monoclonal antibody</td>
<td>Randomized, double blinded study</td>
<td>CLE</td>
</tr>
<tr>
<td>Anifrolumab</td>
<td>Anti-IFN type 1α receptor antibody</td>
<td>Phase II trial</td>
<td>CLE</td>
</tr>
<tr>
<td>Sirukumab</td>
<td>Anti-IL-6 monoclonal antibody</td>
<td>Phase I trial</td>
<td>Mild stable and active CLE</td>
</tr>
<tr>
<td>Ritusimab</td>
<td>Chimeric anti-Cd20 monoclonal antibody</td>
<td>Randomized, double blinded</td>
<td>Subacute lupus but induces CCLE lesions</td>
</tr>
<tr>
<td>Belimumab</td>
<td>Humanized IgG1 monoclonal antibody binds BlyS</td>
<td>Randomized, double blinded</td>
<td>Mild to moderate mucocutaneous disease</td>
</tr>
<tr>
<td>Ustekinumab</td>
<td>IL-12– and IL-23– binding protein</td>
<td>Phase IIA trial</td>
<td>ACLE, hypertrophic cutaneous lupus, and CCLE</td>
</tr>
<tr>
<td>Tocilizumab</td>
<td>Anti-CD 4 antibody</td>
<td>Case studies</td>
<td>Hyper verrucous lesions</td>
</tr>
</tbody>
</table>

Abbreviations: ACLE, acute cutaneous lupus erythematosus; CCLE, chronic cutaneous lupus erythematosus; CLE, cutaneous lupus erythematosus.

Table 1. Promising biologicals used in lupus
Rituximab. Rituximab is a chimeric anti-CD20 monoclonal antibody; it induces B-cell lysis through antibody-dependent cellular toxicity. It is the first choice for patients with severe autoimmune diseases and those with disease resistant to conventional treatment. It is also useful in subacute lupus but has potential for induction of discoid lesions (Vital et al., 2015). Discoid lesions are B-cell independent, and hence rituximab may not have any effect on these lesions. It is used at dosages of 375 mg/m² of body surface area given as weekly infusions for 2 weeks, along with an initial dose of prednisone (Tokunaga et al., 2005).

Belimumab. Belimumab is a IgG1 monoclonal antibody that binds to B lymphocyte stimulator. At a dose of 10 mg/kg it is shown to reduce SLE-related flares, normalize C3 levels, and have a steroid-sparing effect. The main benefit is seen in mild to moderate mucocutaneous and musculoskeletal disease (Hahn, 2013). An unexpected adverse effect is depression.

Ustekinumab. Ustekinumab is a human monoclonal antibody that binds to IL-12 and IL-23, thereby preventing the activation of Th17 cells. It has been approved for treatment of psoriasis and also used for ACLE, hypertrophic cutaneous lupus, and CCLE. Currently, a phase IIa study for the safety and efficacy of ustekinumab is underway. Multiple case reports are published regarding its benefit in CCLE (Winchester et al., 2012).

Apremilast. Apremilast is a phosphodiesterase inhibitor that suppresses Th1 and Th17 immune responses. Currently, a phase II, open label, single-arm pilot study for its use in discoid lupus erythematosus is underway. It has shown promise in dosages of 20 mg twice daily for 85 days in eight patients with discoid lupus erythematosus (De Souza et al., 2012).

Potential upcoming drugs
There are no current clinical trials with anticomplement agents for lupus patients. Lupus-specific tolerogenic peptides (P140 and hCDR1) are reported to be safe and well tolerated in patients with lupus. They appear to be attractive candidates for specific treatment of lupus without interfering with normal immune function. Tocilizumab and anti-CD4 antibody have been used to treat CLE lesions in individual reports. Danazol has been used to treat lesions in women with...
premenstrual flair. Chaperonin is a heat shock protein and secretory molecule that has been shown to selectively suppress cutaneous lupus and lupus nephritis in SLE-induced mice (Winkelman et al., 2013).

CONCLUSION
The early single lesion of CLE may respond well to topical or intralesional therapy (Figure 1). For patients with severe, resistant, or recurrent lesions, it is very important to prevent scarring and postinflammatory changes. Currently, only open label, nonrandomized studies have been published in the literature, with very few randomized clinical trials comparing the different drugs that have been used for many years (Jessop et al., 2009). Hence, at this time most of the recommendations to our patients are based on expert opinion and observational studies.

CONFLICT OF INTEREST
The authors state no conflict of interest.

REFERENCES