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The prevalence and severity of atopic diseases (atopic
dermatitis, asthma, and allergic rhinitis) have increased
over recent decades, particularly in industrialized na-
tions. Atopic dermatitis, like asthma, is more common
in older siblings and in less crowded houses and with
late entry to day care, increased maternal education,
and higher socio-economic status. The inverse relation-
ship between the incidence of atopy and childhood in-
fections has led to the ‘‘hygiene hypothesis,’’ which
suggests that diminished exposure to childhood infec-
tions in modern society has led to decreased TH1-type
responses. Reduced TH1 may lead to enhanced TH2-
type in£ammation, which is important in promoting
asthma and allergic disease. Corticosteroids, commonly
used to treat these conditions, inhibit the function of in-
£ammatory cells, but they are ine¡ective in altering the

initial TH2-type response to allergens in a sensitized in-
dividual. Treatment with TH1 cytokines not only has
failed to make any signi¢cant impact on the outcome
of these diseases, but it also has caused signi¢cant ad-
verse reactions. A novel therapeutic approach, recently
reported in the preclinical setting, is the use of oligo-
deoxynucleotides, which contain unmethylated motifs
centered on CG dinucleotides. These CpG oligodeoxy-
nucleotides potently induceTH1 cytokines and suppress
TH2 cytokines, and can prevent manifestations of asth-
ma and other allergic diseases in animal models. They
have the potential to reverse TH2-type responses to al-
lergens and thus restore balance to the immune system
without the adverse e¡ects of TH1 cytokines. Key words:
atopic dermatitis/allergic rhinitis/asthma/DNA/oligodeoxy
nucleotides. J Investig Dermatol Symp Proc 9:23 ^28, 2004

A
topic eczema or dermatitis (AD) is often the ¢rst
manifestation of atopy in a child at risk of develop-
ing atopic diseases. Allergic responses to food are
similarly early, followed by asthma and allergic
rhinitis (AR) (Holgate and Church, 1993). Approxi-

mately 80% of children with AD develop asthma or allergic rhi-
nitis. These children frequently have more severe asthma than do
asthmatic children without AD (Bu¡um and Settipane, 1966). In-
deed, recent studies suggest that the immune mechanisms under-
lying asthma and AD have more similarities than di¡erences
(Leung, 1999). Despite an expanding repertoire of medications
available for the treatment of asthma and other atopic disorders
in the past three decades, the prevalence, severity, and mortality
of asthma have increased signi¢cantly (Martin et al, 1996; Sears,
1991).
Predominant tissue eosinophilia is a hallmark of allergic in-

£ammation (Martin et al, 1996).The number, activity, and survival
of eosinophils are controlled through multiple pathways, includ-
ing cytokines released by in£ammatory cells such as T helper
cells, NK cells, eosinophils, and mast cells. T helper lymphocytes
can be divided intoTH1 and TH2 cells on the basis on their cyto-
kine production (Mosmann et al, 1986). TH1 cells produce IL-2
and IFN-g (TH1 cytokines); TH2 cells produce IL-4, IL-5, IL-6,
IL-10 ,and IL-13 (TH2 cytokines).
TH1 and TH2 cells interact in a counter-regulatory fashion,

maintaining a critical balance. On the one hand, IL-4 promotes

TH2 cell maturation from na|«ve TH0 cells (Swain et al, 1990) and
suppresses TH1 cells and their cytokine production (Moore et al,
1990). On the other hand, IFN-g inhibits the proliferation of
TH2 cells (Gajewski et al, 1988) and promotesTH1 cells (Parronchi
et al, 1992). Macrophage-derived IL-12 can swing the balance to-
ward TH1 (Bliss et al, 1996), at least in part through the induction
of IFN-g (Micallef et al, 1996). The TH2 cytokines IL-4, IL-5,
IL-9, and IL-13 (Sinigaglia et al, 1999) promote eosinophil prod-
uction, recruitment, and survival; they are also important in the
isotype switching of B cells to IgE (Nakajima et al, 1992; Ohnishi
et al, 1993). In turn, allergen-speci¢c IgE plays an important role in
eosinophil recruitment during the allergic late-phase in£amma-
tory response (Coyle et al, 1996). TH1-type responses can be in-
duced and TH2 responses can be suppressed by exposure to
pathogen-associated molecular patterns (PAMP), such as bacter-
ia-like DNA, that contain CpG motifs. This review describes the
studies supporting the use of CpG DNA in the immunomodula-
tion of allergic in£ammation (overview inTable I).
Current therapy for asthma is centered on anti-in£ammatory

agents, with corticosteroids the ‘‘gold standard’’ for treatment.
These agents broadly reduce the in£ammatory response (systemi-
cally as well as in the lungs), but they work ‘‘downstream’’ and
have their major e¡ects on e¡ector cells in the lungs. They gener-
ally do not alter the initial antigen-induced immune response to
allergens in sensitized individuals; there is debate over the extent
of their e¡ect on allergen-speci¢c IgE; and they have no direct
e¡ect on suppression of TH2-mediated pathophysiologic
changes. Indeed, there is some evidence that steroids enhance
TH2 responses (Franchimont et al, 2000; Ramirez, 1998). More-
over, their toxicities (especially when administered systemically)
are manifold, ranging from adrenal-cortical insu⁄ciency to os-
teoporosis. The need clearly exists for novel disease-modifying
pharmacotherapeutic agents for the treatment of asthma and
other allergic disorders.
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THE HYGIENE HYPOTHESIS AND ITS PROBLEMS

One currently popular explanation for the rise of asthma preva-
lence and severity is the hygiene hypothesis. Data suggest that
the increasing prevalence of asthma and allergic diseases in in-
dustrialized countries may be due to a lack of early childhood
infections. Von Mutius and colleagues demonstrated a preva-
lence of asthma and allergic diseases in the former East Ger-
many that is lower than in the former West Germany, despite
worse air pollution and lower living standards in the eastern re-
gions. This di¡erence in prevalence was associated with early
childhood infection in group day care settings in the East (von
Mutius et al, 1992). The link between early infections and de-
creased incidence of asthma and other allergic diseases is further
strengthened by family studies in which subjects with greater
numbers of older siblings are relatively protected against the de-
velopment of atopy and asthma; this may also be due to the ear-
lier and more frequent occurrence of childhood infections
induced by older siblings returning home from school or day
care (von Mutius et al, 1994). More direct evidence on the role
of microbial infections in protecting against asthma and atopy
comes from a study carried out in Guinea-Bissau in 1979.
Shaheen and colleagues demonstrated that a history of measles
infection was associated with signi¢cant reduction in the risk of
atopy (Shaheen et al, 1996). In related investigations, Shirakawa
and colleagues found that the strength of positive tuberculin
skin response was inversely associated with the incidence of asth-
ma and atopy in Japanese school children (Shirakawa et al, 1997).
Tuberculin response correlated with induction of TH1 cytokines
(IFN-g) and suppression of TH2 cytokines (IL-4 and IL-13).
All of these studies support the idea that early-life infections

may protect against the development of atopy and atopic
diseases like asthma. This so-called hygiene hypothesis has been
given an immunological framework in which the balance
between TH1-type and TH2-type immune responses is pivotal
(Matricardi and Bonini, 2000; Strachan, 1989).
Epidemiological studies of helminth infections and autoim-

mune diseases raise concerns about the accuracy of this frame-
work. Helminth infections are potent natural stimuli for TH2
responses, and they are strongly associated with TH2-type im-
mune responses, such as high levels of IgE, eosinophilia, and
mastocytosis (Yazdanbakhsh et al, 2001). Populations with high
endemic levels of helminth infections, however, appear to be
protective against atopy. Infection of mice with helminth has
been shown to suppress the pulmonary allergic response to ex-
perimental allergens, such as ovalbumin (Wang et al, 2001). This
suggests that an increase in TH2-type responses alone cannot
explain the recent rise in atopic disorders. The prevalence of
Type I diabetes, a TH-mediated disease, has also progressively
increased in the past few decades in the same populations that
have demonstrated an increase in atopic conditions (Stene and
Nafstad, 2001). The increase in allergic disease and the escalation
of autoimmune disorders cannot be ascribed to a simple imbal-
ance between TH1 and TH2 responses. Failure of regulatory
pathways, such as IL-10 and TGF-b, may account for these com-
plex ¢ndings.

BACTERIAL DNA: CpG OLIGODEOXYNUCLEOTIDES

Bacterial DNA, unlike mammalian DNA, is immunostimula-
tory; application of bacterial DNA to mammalian immune cells
leads to myriad e¡ects, including rescue from apoptosis, induc-
tion of B cell proliferation, and stimulation of immunoglobulin
secretion (Krieg et al, 1995). Bacterial DNA di¡ers from mam-
malian DNA in two key features. First, bacterial DNA has the
expected 1:16 frequency of CpG dinucleotides (cytosine and
guanine with phosphodiester backbone), whereas mammalian
DNA has CpG suppression, with CpG dinucleotides being
found at approximately a quarter of the expected frequency

(1:50^1:100) (Bird et al, 1987). Furthermore, when present in
mammalian DNA, the majority of the cytosine in CpG dinu-
cleotides is methylated whereas it is unmethylated in bacterial
DNA. Oligodeoxynucleotides (ODN) containing DNA motifs
centered around unmethylated CG dinucleotides (CpG ODN)
have immune e¡ects similar to those of native bacterial DNA.
CpG ODN are probably recognized by one of the PAMP recep-
tors. Hemmi and colleagues reported that a member of the toll-
like receptor family, TLR9, recognizes bacterial DNA (Hemmi
et al, 2000). Among the pleiotropic properties of CpG ODN is
the ability to strongly induce TH1-type responses. Early studies
demonstrated the induction of IL-12 (Klinman et al, 1996) and
IFN-g (Halpern et al, 1996). Thus, bacterial infections may lead
to the induction of TH1 responses, at least in part through direct
e¡ects of bacterial DNA on immune cells. The postulated e¡ects
of CpG ODN include both direct and indirect e¡ects on the
commitment of CD4þ cells to a TH1 phenotype. These
responses may downregulate and prevent the establishment
of TH2 responses, which would diminish the manifestations of
asthma and atopy. In addition, however, CpG ODN strongly
induce IL-10, which inhibits both TH1 and TH2 responses in a
dose-dependent manner (Kitagaki et al, 2002). Given the pro-
motion of IL-10 by CpG ODN and a strong correlation be-
tween IL-10 induction and IL-5 suppression in vitro (Kitagaki
et al, 2002), we speculate that the e⁄cacy of CpG ODN in allergy
may include promotion of regulatory responses as well as in-
duction of TH1-type cytokines. Regulatory T cells (Tr1 or
CD4þCD25þ ) have been shown to regulate TH2 responses
(Suri-Payer et al, 1999) and downregulate antigen-speci¢c IgE
responses, promoting tolerance to allergens (Cottrez et al, 2000;
Curotto de Lafaille et al, 2001). Tolerance can be transferred with
CD4þCD25þ cells, which prevent the development of OVA-
speci¢c IgE, inhibit OVA-induced T lymphocyte proliferation,
and suppress OVA-induced IL-4 and IL-5. Unlike the transfer of
TH1 clones, this is associated with the induction of IL-10 but
not IFN-g (Cottrez et al, 2000). Treatment with killed M. vaccae
confers protection against allergen-induced eosinophilic airway
in£ammation through the induction of CD4þCD25þ
CD45RBLo regulatoryT cells (Zuany-Amorim et al, 2002). The
protective e¡ect of these cells is dependent on IL-10 and TGF-b.
IL-10 is also required for the development of regulatoryT cells
(Akbari et al, 2002). These e¡ects may be speculatively linked to
CpG DNA, which may inhibit TH2-mediated responses
through multiple pathways.

EFFECTS OF CpG ODN ON ALLERGIC INFLAMMATION
AND MANIFESTATIONS OFALLERGIC DISEASES

On the basis of our understanding of the e¡ects of CpG ODN
on the TH1/TH2 balance, we have examined the use of CpG
ODN as a therapeutic option for allergic asthma. For these in-
itial studies, we utilized a murine model of asthma in which
C57BL/6 mice were sensitized to schistosome eggs and chal-
lenged with soluble schistosome antigen (SEA) (Kline et al,
1998). To determine the e¡ect of CpG ODN in this model, we
compared the development of pulmonary eosinophilia between
mice that received eggs in the presence or absence of CpG
ODNor control ODN.We found that mice that were pretreated
with CpG ODN developed signi¢cantly fewer lung eosinophils
than did those who were sensitized in the absence of ODNor in
the presence of control (non-CpG) ODN.These mice were also
protected against the development of a marked, multicellular
peribronchial in£ammatory response. We next evaluated the
e¡ect of CpG ODN on nonspeci¢c bronchial hyperreactivity
in this model by performing methacholine challenges using a
whole-body plethysmograph. Mice previously sensitized to
schistosome eggs and challenged with SEA developed dose-de-
pendent methacholine-induced bronchospasm that was signi¢-
cantly greater than in control mice or mice pretreated with

CpG DNA ANDATOPY 25VOL. 9, NO. 1 JANUARY 2004



CpG ODN, and it was no di¡erent from that in mice that re-
ceived control ODN.These studies con¢rm that antigen-induced
bronchial hyperreactivity can be prevented by CpG ODN.
In clinical asthma, eosinophilic in£ammation and bronchial

hyperreactivity are typically associated with TH2-type re-
sponses. In this murine model, we found that IgE induction in
the in£amed mice was also reduced by treatment with CpG
ODN. Moreover, elevation in BAL £uid of the TH2 cytokine
IL-4 was replaced in the CpG-treated mice by elevation of
IFN-g and IL-12. Subsequent in vitro studies con¢rmed that re-
challenge of splenocytes harvested from sensitized mice leads to
antigen-speci¢c release of IL-5; this induction is blocked and re-
placed by release of IFN-g both when splenocytes are obtained
from mice treated with CpG ODN at the time of sensitization
and if the splenocytes receive CpG along with antigen in vitro.
Prevention of antigen-driven TH2-type responses is an im-

portant therapeutic goal.These studies indicate that if an antigen
were encountered in the context of CpG DNA, subsequent ex-
posure to the Ag in the lung would lead to a TH1 rather than a
TH2 response. These data support the existence of alternate
pathways, such as IL-10, in suppression of TH2 response by
CpG ODN. Recent studies con¢rmed that the regulatory e¡ects
of IL-10 in suppressing TH2 responses are magni¢ed in the ab-
sence of IFN-g and IL-12 (Kitagaki et al, 2002). Similarities are
seen in a model of allergic rhinosinusitis (Hussain et al, 2002).
These ¢ndings demonstrate that the attributes of a murine

model of asthma characterized by IgE production, airway eosi-
nophilia, TH2-type cytokine induction, and bronchial hyper-
reactivity do not develop when CpG ODN is administered at
the time of allergen sensitization (Kline et al, 1998). As this pro-
tection is associated with induction of TH1-type responses, we
next evaluated whether TH1 cytokines were necessary for the
protective e¡ects of CpG ODN. For these studies, we examined
the e¡ect of CpG ODN on the development of airway eosino-
philia and bronchial hyperreactivity in the absence of IFN-g,
IL-12, or both; these experiments were carried out using both
anti-cytokine-blocking antibodies and cytokine gene knockout
mice (Kline et al, 1999). Surprisingly, we found that neither
cytokine alone nor in combination was needed to permit the
anti-asthma e¡ects of CpG, although the absence of either cyto-
kine did lead to an altered dose-response curve.
Other investigators have con¢rmed and extended our ¢nd-

ings that CpG ODN are e¡ective in abrogating asthma re-
sponses in murine models of asthma. Broide and colleagues
showed that not only systemic but also mucosal administration
of CpG ODN is e¡ective; in an ovalbumin model of asthma,
CpG ODN inhibited IL-5, induced IFN-g, prevented eosino-
philic in£ammation (both in the lung and systemically), and de-
creased airway hyperresponsiveness. Their study demonstrated
sustained e¡ects, with rapid onset (within 24 hours) of inhibi-
tory e¡ect following a single dose of ODN (100 mcg injected
i.p. or instilled intranasally). This bene¢t was equivalent to that
following an entire week of daily corticosteroids (Broide et al,
1998). In another study, Sur and colleagues found that CpG
ODN inhibit airway eosinophilia, IgE induction, and bronchial
hyperresponsiveness using a ragweed model of murine asthma.
They showed that CpG ODN were e¡ective in preventing re-
sponses as late as six weeks following its administration (Sur
et al, 1999).We recently demonstrated that well-established atopic
responses in the lung can be reversed by immunotherapy using
antigen and CpG ODN, although not by either treatment alone
(Kline et al, 2002). Shirota and colleagues con¢rmed that CpG
ODN are e¡ective when given through the transmucosal route
(Shirota et al, 2000). In addition, their ¢ndings are in agreement
that concomitant administration of CpG ODN and antigen is
desirable for maximal inhibitory e¡ects (Shirota et al, 2000).
The same group recently showed that antigen conjugated to
CpG ODN is more potent than unconjugated mixture. They
did not look for evidence of anti-DNA antibodies, although
conjugation of DNA to proteins has been shown to enhance

the likelihood of their occurrence (Shirota et al, 2000). Serebris-
ky and colleagues con¢rmed that CpG ODN induceTH1 cyto-
kines (IFN-g) and suppress TH2 cytokines (IL-4, IL-5, and
IL-13) in lung lavage £uid. Uniquely, they also reported that CpG
ODN decreased expression of the costimulatory molecule B7.2
and slightly increased expression of B7.1 (Serebrisky et al, 2000).
Selective expression of B7.1 and B7.2 has been shown in many
models to preferentially in£uence TH1 and TH2 responses, re-
spectively (Kuchroo et al, 1995).
CpG appears to have similar e¡ects on human cells as on

mice, although various ODN have species speci¢city. Parronchi
and colleagues examined the e¡ects of CpG ODN on human
antigen-speci¢c B cells and CD4þ T cells. CpG ODN induce
the in vitro di¡erentiation of Dermatophagoides pteronyssinus (dust
mite)^speci¢c human CD4þ T cells into TH1 rather than TH2
cells. Similar to cells di¡erentiated in the presence of exogenous
IL-12, cells incubated with CpG ODNdisplayed diminished IL-
4 production and enhanced IFN-g production (Parronchi et al,
1999). These e¡ects appeared to require the induction of IFN-g.
Fujieda and colleagues recently evaluated the e¡ects of CpG
ODN on (atopic) human peripheral mononuclear cells (PBMC)
stimulated with IL-4 and anti-CD-40 monoclonal antibody.
These cells developed an increase in IgE production, which was
inhibited by CpG ODN. These e¡ects are mediated by both
IL-12 and IFN-g and appear to be CpG speci¢c (Fujieda et al, 2000).

CPG ODN AS AN ADJUVANT

Numerous immunological adjuvants have been described with
varied potency for inducing an antibody or T cell response.
Kim and colleagues compared commonly used adjuvants for
two human cancer antigens (MUC1 and GD3) conjugated to
an immunogenic carrier molecule, KLH (keyhole limpet hemo-
cyanin). They measured antibody responses for IgM and IgG,T
cell proliferation, and cytokine release. QS21, TiterMax,
MoGM-CSF, MPL/DETOX, and CpG ODN adjuvants were
e¡ective for induction of IgM and IgG antibodies against both
antigens. TiterMax and CpG ODN generated potent IFN-g re-
sponses but less potent proliferation of IL-4 release as compared
to other adjuvants (Kim et al, 1999). This study suggests that
CpG ODN are among the most potent TH1-promoting adju-
vants currently available. The use of adjuvants in immunother-
apy for atopic conditions has been directed at increasing
immunogenicity but not allergenicity, with the hope of redu-
cing dose-related adverse e¡ects. Alum-precipitated extracts
have been examined for di¡erent pollens (Tari et al, 1997).
Although these extracts have been shown to have equal safety
and at least equal clinical e¡ectiveness (Tuft, 1980), alum is
known to induce antigen-speci¢c IgE in animal models. On
the other hand, Freund’s complete adjuvant induces IgG produc-
tion and favors a TH1 phenotype of T helper cells (Sano et al,
1999), but it is not appropriate for clinical use. It has been specu-
lated that the immunoregulatory e¡ects of killed mycobacter-
ium bacilli might be due to the bacilli’s CpG content.

CPG ODN AS ATREATMENT FOR SKIN DISORDERS

The immunoregulatory abnormalities seen in patients with atopic
dermatitis�elevated serum IgE and peripheral eosinophilia�
re£ect increased expression of theTH2 cytokines IL-4, IL-5, and
IL-13 and a concomitant decrease in IFN-g especially during
acute exacerbations (Kimura et al, 1998a; Kimura et al, 1998b).
IL-10 dysregulation has been reported in di¡erent atopic condi-
tions. Increased levels of IL-10 mRNA have been reported in
asthma (Robinson et al, 1996) and atopic dermatitis (Ohmen
et al, 1995), but serum levels in asthma (Borish et al, 1996) were
low and similar to those seen as normal as compared to normal
controls in atopic dermatitis (Yoshizawa et al, 2002). Corne and
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colleagues reported reduced IL-10 levels in atopic compared
with non-atopic subjects during the acute phase of upper re-
spiratory tract infections (Corne et al, 2001). It has been specu-
lated that increased local IL-10 in atopic dermatitis is secondary
to constant trauma and bacterial infection. This IL-10 overex-
pression may be able to suppress TH1 responses but not TH2 re-
sponses, as higher levels of IL-10 are required to suppress TH2
responses in the skin (Terui et al, 2001).
In our mouse model of asthma, we showed that CpG ODN

signi¢cantly improves hyperresponsiveness, eosinophilic in£am-
mation, and serum IgE. They also suppress TH2 cytokines and
increase TH1 cytokines. CpG ODN mainly work through
TLR9 receptor on professional antigen-presenting cells and
skewT cells toTH1 cells. Increased numbers of antigen-present-
ing cells, cutaneous dendritic cells, and Langerhans cells have
been found in AD (Ban¢eld et al, 2001; Leung et al, 1983). Jakob
and colleagues showed that CpG ODN treatment of murine fe-
tal skin^derived dendritic and Langerhans cells causes activa-
tion, mobilization, and increased production of IL-12 (Jakob
et al, 1998). These ¢ndings were con¢rmed by another study that
showed that intradermal or topical application of CpG ODN
induces Langerhans cell migration in a manner similar to that
of allergens or lipopolysaccharides (Ban et al, 2000). Beignon
and colleagues explored the e¡ects of CpG ODN on bare skin
when combined with an antigen.They showed that the presence
of CpG ODN (1826) in in£uenza peptide and cholera toxin pre-
parations enhances the proliferation of peptide and virus speci¢c
Tcells. They also showed that TH2 responses induced by cholera
toxin are shifted toTH1, as demonstrated by an increase in IFN-
g and a decrease in IL-4, a predominance of IgG2a anti-CT
antibodies in serum, and a downregulation of total serum IgE
levels (Beignon et al, 2002). Combined data from our studies
with the murine model of allergic rhinitis and limited data from
skin favor the idea that CpG ODNmay be an attractive therapy
in the treatment of acute atopic dermatitis. On the other hand,
chronic AD skin has signi¢cantly fewer IL-4 and IL-13
mRNA-expressing cells but higher numbers of IL-5, GM-CSF,
IL-12, and IFN-g mRNA expression than has acute AD skin
(Leung, 1999). For that reason, the long-term bene¢ts of treat-
ment with CpG ODN remain speculative.

CPG ODN ANDAUTOIMMUNITY

The possibility exists that CpG ODN can induce autoimmune
diseases because of stimulation of TH1 responses. Data support-
ing this concern include the fact that CpG DNA, which is cap-
able of activating endothelial cells, can be isolated from patients
with systemic lupus erythematosus (Miyata et al, 2001) and the
fact that activation of antigen-presenting cells by CpG ODN
through TLR9 breaks immune tolerance (Ichikawa et al, 2002).
Limited animal data have shown, however, that CpG ODN in-
duce neither autoimmune disease nor anti-DNA antibodies in
wild-type mice. Native unmodi¢ed DNA is poorly immuno-
genic; several studies have con¢rmed that double-strand DNA
is an extremely poor antigen (Isenberg et al, 1994; Pisetsky,
1996). Although treatment of lupus-prone NZB X NZW F1
mice promotes a modest increase in the number of B cells that
secrete anti-DNA IgG antibodies, there is no evidence of glo-
merulonephritis or autoimmune disease (Mor et al, 1997). On
the other hand, one study found that bacterial DNA stimulates
the generation of anti-DNA antibodies and increases immune-
mediated glomerulonephritis in a di¡erent mouse model of SLE
(Gilkeson et al, 1993). Other studies suggest that bacterial DNA
activates autoreactive encephalitogenic T cells (Gilkeson et al,
1989) and induces allergic encephalomyelitis in murine models
of multiple sclerosis (Segal et al, 2000). Finally, in primate studies
wherein monkeys were treated with CpG ODN along with he-
patitis B vaccine, anti-hepatitis-B titers were signi¢cantly en-
hanced, with no evidence of autoimmune diseases (Hartmann

et al, 2000). Thus, although the possibility that treatment with
CpG ODNmay induce or promote autoimmune disorders can-
not be ruled out, current evidence suggests that this is of rela-
tively low likelihood. Of course, close attention to potential
autoimmune responses must be paid in all controlled clinical
trials.

FUTURE DIRECTIONS

CpG ODN are now in clinical trials for treatment of asthma
and atopic disorders. Preclinical studies suggest that these agents
may play an important role in the treatment of allergic diseases.
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